Face recognition using Histograms of Oriented Gradients

نویسندگان

  • Oscar Déniz-Suárez
  • Gloria Bueno García
  • Jesús Salido
  • Fernando De la Torre
چکیده

Face recognition has been a long standing problem in computer vision. Recently, Histograms of Oriented Gradients (HOGs) have proven to be an effective descriptor for object recognition in general and face recognition in particular. In this paper, we investigate a simple but powerful approach to make robust use of HOG features for face recognition. The three main contributions of this work are: First, in order to compensate for errors in facial feature detection due to occlusions, pose and illumination changes, we propose to extract HOG descriptors from a regular grid. Second, fusion of HOG descriptors at different scales allows to capture important structure for face recognition. Third, we identify the necessity of performing dimensionality reduction to remove noise and make the classification process less prone to overfitting. This is particularly important if HOG features are extracted from overlapping cells. Finally, experimental results on four databases illustrate the benefits of our approach. 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection: Histogram of Oriented Gradients and Bag of Feature Method

Face detection has been one of the most studied topics in computer vision literature; so many algorithms have been developed with different approaches to overcome some detection problems such as occlusion, illumination condition, scale, among others. Histograms of Oriented Gradients are an effective descriptor for object recognition and detection. These descriptors are powerful to detect faces ...

متن کامل

3D Face Recognition Using Spherical Vector Norms Map

In this paper, we introduce a novel, automatic method for 3D face recognition. A new feature called a spherical vector norms map of a 3D face is created using the normal vector of each point. This feature contains more detailed information than the original depth image in regions such as the eyes and nose. For certain flat areas of 3D face, such as the forehead and cheeks, this map could increa...

متن کامل

Similar Partial Copy Recognition for Line Drawings Using Concentric Multi-Region Histograms of Oriented Gradients

Since line drawings just employ simple lines to represent objects, similar drawings which represent the same objects can be created easily. Therefore, for protecting the copyright of line drawings, similar partial copy is a problem we have to consider. In this paper, we focus on similar partial copy recognition for line drawings and propose Concentric Multi-Region Histograms of Oriented Gradien...

متن کامل

Enhancing Real-Time Human Detection Based on Histograms of Oriented Gradients

In this paper we propose a human detection framework based on an enhanced version of Histogram of Oriented Gradients (HOG) features. These feature descriptors are computed with the help of a precalculated histogram of square-blocks. This novel method outperforms the integral of oriented histograms allowing the calculation of a single feature four times faster. Using Adaboost for HOG feature sel...

متن کامل

Invariant encoding schemes for visual recognition

Many encoding schemes, such as the Scale Invariant Feature Transform (SIFT) and Histograms of Oriented Gradients (HOG), make use of templates of histograms to enable a loose encoding of the spatial position of basic features such as oriented gradients. Whilst such schemes have been successfully applied, the use of a template may limit the potential as it forces the histograms to conform to a ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011